Modeling crawling cell movement

J. Löber1 F. Ziebert2 I. S. Aranson3

1Institute of Theoretical Physics
TU Berlin

2Institute of Physics
University of Freiburg

3Materials Science Division
Argonne National Laboratory

Group Seminar, April 2014
1 Video from: A Video Tour of Cell Motility, http://cellix.imba.oeaw.ac.at/

- several moving cells
- Top left: mouse fibroblasts moving into an artificial wound (total video time: 3h)
- Bottom left: chick fibroblasts (total video time: 2h)
- Top right: mouse melanoma cell (total video time: 20min)
- Bottom right: trout epidermal keratocyte (total video time: 4min)
2D cell shape modeled by phase field $\rho(x, y, t)$

- $\rho = 1$: cell, $\rho = 0$: no cell
- we neglect variations in height of cell
- nucleus rolls behind the lamellipodium front

2 Image from: F. Ziebert and I. S. Aranson, PLOS ONE, 8, e64511.
3 Video from: A Video Tour of Cell Motility, http://cellix.imba.oeaw.ac.at/
Actin cytoskeleton

- cell crawling is driven by the continuous reorganization and turnover of the actin cytoskeleton
- two functions
 - protrusion by polymerization
 - contraction by interaction with myosin
- modeled by average actin orientation field $\mathbf{p} = \left(\begin{array}{c} p_x(x, y, t) \\ p_y(x, y, t) \end{array} \right)$.

J. Löber, F. Ziebert, I. S. Aranson
Adhesion sites

- adhesion sites connect the actin network to the substrate
- video: adhesion sites (red)\(^5\)
- modeled by concentration of adhesion sites \(A(x, y, t)\)
- adhesion sites do not move with the cell
- rupture of adhesion sites in the retracting region of the cell

Myosin concentration is high where actin is disassembled and could be modeled by an extra field $m(x, y, t)$ but is eliminated in our model.

(c) Sites of actin assembly and disassembly

(d) Concentration of myosin

Traction and substrate displacements

- cell exerts traction forces $\mathbf{T} = \begin{pmatrix} T_x(x, y, t) \\ T_y(x, y, t) \end{pmatrix}$ on substrate
- leads to substrate displacements:\n $\mathbf{u} = \begin{pmatrix} u_x(x, y, t) \\ u_y(x, y, t) \end{pmatrix}$

Phase field $\rho(x, y, t)$

- phase field: $\rho = 1$: cell, $\rho = 0$: no cell, $\nabla \rho \neq 0$: cell boundary

$$\partial_t \rho = D_\rho \Delta \rho - (1 - \rho)(\delta - \rho)\rho - \alpha A \mathbf{p} \cdot (\nabla \rho)$$

- $\rho(x) = 1/(1 + \exp(x/\sqrt{D_\rho 2}))$ is a steplike stationary solution for $\delta = 1/2$: Mathematica

- volume conservation by feedback
 - $\langle \rho \rangle =$ volume integral over ρ
 - V_0: initial volume
 - $\sigma|\mathbf{p}|^2$ models actin network contraction

$$\delta = \frac{1}{2} + \mu (\langle \rho \rangle - V_0) - \sigma|\mathbf{p}|^2$$

- advection of ρ along the actin orientation vector \mathbf{p},
 α: propulsion strength
Actin orientation field $p(x, y, t)$

$$\partial_t p = D_p \Delta p - \tau_1^{-1} p - \tau_2^{-1} (1 - \rho^2) p - \beta f(\nabla \rho) - \gamma [\nabla \rho \cdot p] p$$

- nearest neighbour interaction by diffusion D_p
- degradation of actin by depolymerization inside (τ_1) and outside (τ_2) of the cell
- actin created by polymerization at the cell front, $f(\kappa) = \frac{\kappa}{\sqrt{1+\epsilon\kappa^2}}$ saturates for large κ
- reflection symmetry broken due to myosin motors
Myosin concentration $m(x, y, t)$

- actin disassembles where myosin concentration is higher than equilibrium value m_0

$$\partial_t p = D_p \Delta p - \tau_1^{-1} p - \tau_2^{-1} (1 - \rho^2) p - \beta f (\nabla \rho) - (m - m_0) p$$

- myosin
 - diffuses with coefficient D_m
 - relaxes to m_0 with rate τ_m
 - moves along the actin filaments with velocity V_m
 - is suppressed near to front of the cell with rate $\bar{\gamma} \nabla \rho \cdot p$

$$\partial_t m = D_m \Delta m - \tau_m^{-1} (m - m_0) + V_m p \cdot \nabla m + \bar{\gamma} \nabla \rho \cdot p$$

- assume $\tau_m \ll 1$

$$m - m_0 \approx \tau_m \bar{\gamma} \nabla \rho \cdot p$$
Concentration of adhesion sites $A(x, y, t)$

$$\partial_t A = D_A \Delta A + a_0 \rho p^2 + a_{nl} \rho A^2 - sA^3 - d(|u|)A$$

- adhesion sites form only if actin is present but independent of actin direction: linear attachment $\sim \rho p^2$
- already formed adhesion complex favors formation of more adhesive contacts nearby: nonlinear attachment $\sim A^2$
- nonlinear detachment $\sim A^3$ locally saturates concentration of adhesion sites
- breakup of adhesion sites if substrate displacement $|u|$ exceeds critical displacement U_c: linear step-like detachment rate

$$d(|u|) = \frac{d}{2} \left(1 + \tanh \left[b \left(u^2 - U_c^2 \right) \right]\right)$$
Substrate model: Kelvin-Voigt material

- stress tensor of 3D incompressible isotropic visco-elastic (Kelvin-Voigt) material

 \[
 \sigma_{ik} = \tilde{G}(u_{i,k} + u_{k,i}) + \tilde{\eta}(\dot{u}_{i,k} + \dot{u}_{k,i}) - p\delta_{ik}
 \]

- overdamped motion: \(\ddot{u}_i = 0 \), \(\sigma_{ik,k} = 0 \)

\[
\tilde{G}\nabla^2 u + \tilde{\eta}\nabla^2 \dot{u} = \nabla p, \quad \nabla \cdot u = 0
\]

- lower boundary conditions: \(u(x, y, z = 0, t) = 0 \)
- upper boundary conditions: traction force \(T, H \): height of substrate layer

\[
\sigma_{xz}(x, y, z = H, t) = T_x(x, y, t), \\
\sigma_{yz}(x, y, z = H, t) = T_y(x, y, t), \\
\sigma_{zz}(x, y, z = H, t) = 0,
\]

- periodic boundary conditions in \(x-, y- \) direction with period \(L \)
Substrate model: traction forces $\mathbf{T}(x, y, t)$

- integrate over z-direction
- assume height \ll lateral extension: $H \ll L$, expand in H/L

$$
\partial_t \mathbf{u} = -\frac{1}{\eta} \left(G \mathbf{u} - \frac{1}{\xi} \left(\mathbf{T} + h \left[5 \Delta \mathbf{T} + 19 \nabla (\nabla \cdot \mathbf{T}) \right] \right) \right)
$$

- traction due to actin polymerization: $\mathbf{T}_{pr} = -\xi \rho \mathbf{A}_p$
- traction due to friction: $\mathbf{T}_{fr} = \rho \mathbf{A} \zeta$
- cell does not exert a net force on substrate: determine ζ by $\langle \mathbf{T}_{pr} + \mathbf{T}_{fr} \rangle = 0$

$$
\mathbf{T} = \xi \rho \mathbf{A} \frac{\langle \mathbf{A} \rho \mathbf{p} \rangle}{\langle \mathbf{A} \rho \rangle} - \xi \rho \mathbf{p}
$$

- for heterogeneous substrate, shear modulus G (stiffness) depends on space

J. Löber, F. Ziebert, I. S. Aranson

Modeling crawling cell movement
Figure: Shape of cells in the steady moving regime. Black contour: $\rho = 0.25$. a) Actin orientation field \mathbf{p}. b) Traction force \mathbf{T}. Red (blue) corresponds to large (small) values of $|\mathbf{T}|$. c) Displacements field \mathbf{u}. Red (blue) corresponds to large (small) values of $|\mathbf{u}|$.
Phase diagram
Propulsion strength α vs. substrate’s shear modulus G

Figure: Phase diagram for propulsion strength α vs. substrate’s shear modulus G. ● denotes non-moving states, ■ steady moving (gliding) states, ◆ stick-slip motion, ★ wandering bipedal and ▼, ▲ breathing and bipedal modes, respectively.

J. Löber, F. Ziebert, I. S. Aranson
Modeling crawling cell movement
Stick-slip motion

- top panel: y-component of center of mass (c.o.m.) of upper (red) and lower (green) half of cell
- x-component does not show oscillations
- overall c.o.m. (black line) moves in a straight line
- compare with experiment\(^a\)

Figure: Cell shape and substrate displacement field.
anti-phase oscillations of c.o.m. x- components of upper (red) and lower (green) cell half

in-phase oscillations of y- components

c.o.m. (black) also oscillates

compare with experiment 1

Wandering bipedal

- instability in the propagation direction
- similar behavior found in a simple model for deformable self-propelled particles:
 - drift bifurcation leads from stationary to moving states
 - 2nd bifurcation leads from straight motion to circular motion

9 T. Ohta, T. Ohkuma, PRL 102, 154101 (2009).

J. Löber, F. Ziebert, I. S. Aranson
Durotaxis (cell migration in a stiffness gradient)

Figure: A linear gradient in substrate’s stiffness G in the y-direction from $G = 0$ (black) at the bottom to $G = 0.4$ (blue) at the top. The curves show center of mass trajectories for different initial positions. They converge to an optimal value of G.

J. Löber, F. Ziebert, I. S. Aranson

Modeling crawling cell movement
Figure: Examples for the behavior of cells colliding with a step in the substrate stiffness (blue: $G = 0.4$, black: $G = 0.05$). The center of mass trajectories are shown in white. Top row: $\alpha = 4 = 2\beta$, bottom row: $\alpha = 4, \beta = 1.5$. Other parameters: $U_c^2 = 0.25$.
Cell-cell interaction with multiple phase fields

- phase fields \(\rho_i \) for \(N \) cells

\[
\partial_t \rho_i + \alpha A p \cdot \nabla \rho_i = D_\rho \Delta \rho_i - \frac{\partial}{\partial \rho_i} V(\rho_i) - \frac{\partial}{\partial \rho_i} W(\rho_1, \ldots, \rho_N), \quad i = 1, \ldots, N.
\]

- \(V \) : self-interaction

\[
\frac{\partial}{\partial \rho_i} V(\rho_i) = \rho_i (\rho_i - \delta_i)(\rho_i - 1)
\]

- \(W \) : volume (steric) interaction avoids interpenetration of cells

\[
W(\rho_1, \ldots, \rho_N) = \sum_{j,k} W_2(\rho_j, \rho_k)
\]

- two cell pair potential

\[
W_2(\rho_1, \rho_2) = \frac{\lambda}{2} \rho_1^m \rho_2^n
\]

 - large and positive if the two cells overlap
 - zero for no overlap
 - \(W_2 \) does not depend on \(m, n \) in the sharp interface limit \(D_\rho \to 0 \)
 - for \(D_\rho > 0 \) perturbations could lead to \(\rho_i < 0 \) \(\Rightarrow \) choose even exponents \(m = n = 2 \) to avoid attraction

- all other fields are shared between cells. Video. Experiment.\(^{10}\)

\(^{10}\)http://cellix.imba.oeaw.ac.at/

J. Löber, F. Ziebert, I. S. Aranson

Modeling crawling cell movement
Figure: The angle of incidence of two cells colliding in a symmetric fashion is larger than their exit angles. White: phase field contours with \(\rho = 0.5 \). Colored: trajectories of colliding cell for different angles of incidence. See video.
Unidirectional collective motion

Figure: Initially, cells move uncorrelated. The alignment mechanism leads to an unidirectional collective motion towards the top left corner. Time is increasing from left to right. Video. Experiment from Phys. Rev. E 74, 061908 (2006).
Coexistence of moving and stationary cells

Figure: Initially moving cells gather in stationary clusters. See video.

Figure: Initially, some cells are moving while some are stationary. Cell-cell collisions set the stationary cells into motion. See video.
Collective rotational motion

Figure: Clockwise rotational motion in a confined medium. Adhesion is larger inside. Video. Experiment (Phys. Rev. E 74, 061908 (2006)).

order parameter ϕ

$$\phi(t) = \frac{1}{N} \sum_{i=1}^{N} \hat{e}_\theta(t) \cdot \hat{v}_i(t)$$

normalized velocity vector $\hat{v}_i(t) = \frac{v_i(t)}{|v_i(t)|}$ for each cell i is projected onto the unit vector \hat{e}_θ tangential to a circle.

Figure J. Löber, F. Ziebert, I. S. Aranson

Modeling crawling cell movement
Adhesion between cells

- keratocytes are responsible for wound healing ⇒ can build cell monolayers
- cell boundaries located at $\nabla \rho_i$
- adhesion = interaction between cell boundaries: $\nabla \rho_i \cdot \sum_{j \neq i} \nabla \rho_j$

$$\frac{\partial}{\partial t} \rho_i + \alpha A p \cdot \nabla \rho_i + \kappa \nabla \rho_i \cdot \sum_{j \neq i} \nabla \rho_j = D_p \Delta \rho_i - \frac{\partial}{\partial \rho_i} V(\rho_i) - \frac{\partial}{\partial \rho_i} W(\rho_1, ..., \rho_N)$$

- multiple cells with cell-cell adhesion
- increasing adhesion strength κ should yield a transition to tissue (= cells sticking firmly together) but gives numerical instabilities instead
- other possibilities:\(^{11}\)

\(^{11}\)Study on multicellular systems using a phase field model, M. Nonomura, PloS one 7, e33501 (2012).
Summary

- phenomenological model for crawling cells based on a reaction-diffusion system
- cells exhibit different modes of movement accompanied by shape changes similar to experiments
 - stick-slip motion
 - bipedal motion
- migration of cells is sensitive to mechanical properties of substrate
- collective motion of multiple cells modeled with interacting phase fields
Outlook

- introduce different adhesion terms to model tissue
- fit model parameters to specific cell types
- avoid breakup of cells
- derive model equations in a more fundamental way as e.g. in (12)

J. Löber, F. Ziebert, and I. S. Aranson.
Modeling crawling cell movement on soft engineered substrates.

F. Ziebert, S. Swaminathan, and I. S. Aranson.

F. Ziebert, and I. S. Aranson.
PLOS ONE, **8**, e64511.

For Further Reading III

Toward a thermodynamically consistent picture of the phase-field model of vesicles: Curvature energy.

Thermodynamically consistent picture of the phase-field model of vesicles: Elimination of the surface tension.

Towards a thermodynamically consistent picture of the phase-field model of vesicles: Local membrane incompressibility.

Phase-field approach to three-dimensional vesicle dynamics.